Canvas 灰度
原色是指不能透过其他颜色的混合调配而得出的“基本色”。一般来说叠加型的三原色是红色、绿色、蓝色,以不同比例将原色混合,可以产生出其他的新颜色。这套原色系统常被称为“RGB 色彩空间”,亦即由红(R)绿(G)蓝(B)所组合出的色彩系统。
当这三种原色以等比例叠加在一起时,会变成灰色;若将此三原色的强度均调至最大并且等量重叠时,则会呈现白色。灰度就是没有色彩,RGB 色彩分量全部相等。
平均值
简单快速,从人眼的感知角度看,图片的灰度阴影和亮度方面做的还不够好
基于人眼感知
人的眼睛内有几种辨别颜色的锥形感光细胞,分别对黄绿色、绿色和蓝紫色的光最敏感。虽然眼球中的椎状细胞并非对红、绿、蓝三色的感受度最强,但是由肉眼的椎状细胞所能感受的光的带宽很大,红、绿、蓝也能够独立刺激这三种颜色的受光体。
人类对红绿蓝三色的感知程度依次是: 绿>红>蓝,所以平均算法从这个角度看是不科学的。应该按照人类对光的感知程度为每个颜色设定一个权重,它们的之间的地位不应该是平等的。
一个常用的计算方法是使用YUV 颜色空间理论
去饱和
为了更通俗易懂,有时我们选择 HLS 模型描述颜色,这三个字母分别表示 Hue(色调)、Saturation(饱和度)、Lightness(亮度)。色调,取值为:0 - 360,0(或 360)表示红色,120 表示绿色,240 表示蓝色,也可取其他数值来指定颜色。饱和度,取值为:0.0% - 100.0%,它通常指颜色的鲜艳程度。亮度,取值为:0.0% - 100.0%,黑色的亮度为 0。
去饱和的过程就是把 RGB 转换为 HLS,然后将饱和度设为 0。因此,我们需要取一种颜色,转换它为最不饱和的值。这个数学公式比本文介绍的更复杂,这里提供一个简单的公式,一个像素可以被去饱和通过计算 RGB 中的最大值和最小值的中间值:
去饱和后,图片立体感减弱,但是更柔和
分解
分解算法可以认为是去饱和更简单一种的方式。分解是基于每一个像素的,只取 RGB 的最大值或者最小值
最大值分解:
最小值分解:
最后更新于